形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。
当z的虚部b=0时,则z为实数;当z的虚部b≠0 时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
应用
1、在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。
2、信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。利用傅立叶变换可将实信号表示成一系列周期函数的和。
3、在应用层面,复分析常用以计算某些实值的反常函数,藉由复值函数得出。方法有多种,见围道积分方法。
4、量子力学中复数是十分重要的,因其理论是建基于复数域上无限维的希尔伯特空间。
上一篇:济公活佛的那个人是谁叫什么名字
下一篇:有什么办法闭上眼睛还能看见东西